How to Choose a Lab Refrigerator or Freezer

How to Choose a Lab Refrigerator or FreezerSelecting a laboratory refrigerator or laboratory freezer is not the same as visiting the local appliance store to pick out a unit for your kitchen.  There are substantial differences.  Not only that, there is a tremendous variety of models available in terms of capacity and performance features. 

This post quickly describes differences between household and laboratory refrigerators and freezers. Then we’ll looks into the many feature options available and help you select the model that meets your requirements.

What’s The Difference Between Household and Lab Refrigerators & Freezers?

Laboratory refrigerators and laboratory freezers are designed and constructed to meet much stricter standards than typically found in household or commercial units.  Pharmaceuticals, blood and plasma, for example, must be stored within tight temperature ranges to avoid loss of potency or spoilage. 

In fact, proper storage of these and other temperature-sensitive products is strictly governed  by organizations such as the Food and Drug Administration (FDA) and agencies such as the Centers for Disease Control and Prevention (CDC).  Improper storage of vaccines, for example, results in loss of potency, represents a tremendous cost in both lost product and the expense of re-vaccination.

Storing valuable or irreplaceable biological specimens are other examples where temperature control is critical.

The cost (and potential penalties) involved due to improper storage in lab freezers and lab refrigerators provides ample justification for their higher cost.       

That’s why temperature control and daily record-keeping are so important.

Specification Guidelines for Lab Refrigerators and Freezers

In the following sections we’ll take a look at points to consider when purchasing a lab refrigerator or lab freezer.

Temperature Control and Display is a good place to start.

More than likely your household fridge will have a dial inside the cabinet offering a few temperature options ranging from warmest to coldest to off.  This is not precise enough for most lab and healthcare facilities.

Laboratory refrigerators typically operate from 2⁰C to 10⁰C and freezers from -10⁰C to -25⁰C although there are exceptions based on models.   Low-temperature freezers again depending on models are available for temperatures to – 25⁰, -30⁰ and -40⁰C.  Ultra-low temperature freezers can be set from -50⁰ to -86⁰C. 

A suggestion: If you are buying a lab freezer choose one that delivers the temperature you need because the lower the temperature the more power it requires.    

More preferred are the highly sophisticated digital LED display microprocessor temperature controllers.  Top-line models such as the Nor-Lake Select series use the more precise programmable logic controls, which is the best choice to maintain the absolute minimum temperature drift.   High-end models also allow setting temperatures to one decimal place.

Most of today’s lab units are designed to display internal temperatures outside the unit.  This means that technicians don’t have to open the door (allowing ambient air to enter) to check and record the temperature.

This brings us to a related subject.

Temperature Recording and Temperature Alarms

The CDC recommends twice daily manually checking and recording the temperature of lab freezers and refrigerators.  While this may seem redundant in view of alarming systems, automated devices may malfunction.  It has happened.

Alarming is an absolutely critical feature when storing valuable vaccines, pharmaceutical and biologicals.  Even the most basic lab refrigerator and lab freezer can be fitted with optional digital thermometer alarms consisting of an internal sensor inserted in a glycol bottle and connected by wire passing over the hinge-side door gasket or through optional sensor access ports to an external control and display module.

The purpose of the glycol is to “insulate” the sensor from responding to quick temperature fluctuations such as when the door is opened.

The next step up is a built-in digital audio and visual high/low temperature alarm with remote alarm contacts to alert personnel elsewhere in the facility. 

Optional USB temperature data loggers with built-in alarms are available to automatically record interior temperatures at user-programmable intervals using NIST traceable probes.  To read the results, simply plug the USB flash drive into a computer and transfer data to a PC for review and archiving.

Manual and Auto Defrost Lab Refrigerators and Lab Freezers

There are important distinctions between manual and auto defrost units.

  • Auto-defrost units are generally favored by laboratories and pharmacies.  Most models have fans that circulate chilled air throughout the unit to create a uniform internal temperature.  Some models allow users to control the frequency and duration of the defrost cycle.  Filling the unit with product or water bottles helps reduce temperature fluctuations due to compressor cycling and door openings.  
  • Manual-defrost scientific refrigerators cool by circulating refrigerant through tubing in the walls.  The internal temperature differential causes the cold air to circulate. Because there is no fan-forced air circulation in manual-defrost refrigerators they are favored for applications such as experiments in open containers where it is not permissible for product to dry out due to moving air.
  • Auto-defrost scientific freezers are preferred by most labs for convenience.  They are self-maintaining and don’t require the availability of a second freezer during defrost cycles.  Some auto-defrost freezers are equipped to provide user control over the defrost cycle.   
  • Manual-defrost scientific freezers work on the same principal as manual-defrost refrigerators.   Ice buildup on interior walls and on the condenser must be removed on a planned basis that includes providing alternative freezer space for the contents during the defrosting operations. 

What About Combination Lab Refrigerator/Freezers?

As a general rule, a stand-alone refrigerator and stand-alone freezer will maintain better temperature control than a combination refrigerator/freezer with a single condenser. This should be considered when tight temperature control is important.

BUT: Limited space availability and the need to provide both refrigeration and freezing capability suggest a combination scientific refrigerator-freezer unit.  Here is a brief description of three design configurations:

  1. The best temperature control is offered by a combination lab refrigerator/freezer where each compartment has its own compressor, thermostat, and external door.  This type of combo model is recommended when storing products that are highly temperature sensitive. 
  2. A lower-cost option for storing less temperature-sensitive products is a laboratory refrigerator/freezer, with only one compressor for both compartments.  The two compartments have  separate external doors and may have separate temperature controls.   Because cold air from the freezer compartment flows via a vent into the refrigerator compartment the temperatures of the two compartments are not completely independent. 
  3. When space is tight, consider an under counter or countertop fridge/freezer unit.  These are generally configured as a refrigerator compartment that contains an internal freezer compartment with a door.  In this case the freezer compartment does not have its own thermostat.

Where to Place Your Lab Refrigerator and Freezer

This is a take-off on measure twice, cut once – the mantra of professional carpenters. Or on the guy who built a boat in the basement to find out it wouldn’t fit through the door.

Here are considerations to keep in mind when purchasing lab refrigerators and freezers:

  • Locating the unit. Be certain that enough physical space is available and that there is proximity to a power outlet – dedicated is preferable; extension cords are not recommended. 
  • Under counter vs. freestanding units. Built-in under-counter units do not require space at the sides and back because they are vented from the front.   Free standing units generally require space at the sides and top for air circulation.  Free standing units are finished on the sides as well as the top and front.  Depending on models, built-in units may or may not be finished on the sides and top.  
  • Side, top and rear clearances for full size units. Manufacturers’ specifications indicate these requirements.  Some designs, for example, require a few inches while other can be snugged against side cabinets and rear walls.
  • Will the under counter lab refrigerator or freezer fit in existing or planned casework? If so is there enough clearance to allow the equipment to function properly? Allow enough space for the unit to be moved for servicing.
  • Local environment. Avoid placing refrigerators and freezers near heating ducts or in areas of direct sunlight.

Optional Lab Refrigerator Equipment

Standard and optional equipment available for scientific refrigerators and freezers varies depending on the manufacturer and model.  We’ve commented on various temperature sensing, monitoring and alarming systems, some of which are classified as optional.

Other options to consider include:

  • Casters or levelers vs. legs
  • Door locks and other security systems
  • Insulated glass vs. solid doors
  • Additional shelving
  • Drawers and baskets
  • Reversed door hinges
  • Stainless steel vs. painted exteriors and/or interiors
  • Sensor ports to access internal scientific equipment
  • Internal electrical outlets

Special Featured Lab Refrigerators and Freezers  

Flammable and/or explosion-proof units may be called for to address serious safety issues.  Flammable units are designed so that volatile substances cannot be ignited by an internal stray spark such as from a compressor or lighting.  If the atmosphere in the lab itself is volatile an explosion-proof laboratory refrigerator or freezer must be specified.  This topic should be discussed with the scientists at Tovatech.

We hope this information is helpful when specifying laboratory refrigerators and freezers.  For additional information and recommendations please contact the lab refrigerator and freezer professionals at Tovatech for expert advice on selecting the right model for your applications.

This entry was posted in Lab Freezer, Lab Refrigerator and tagged , , on by .

About Rachel Kohn

So how did an MIT Ph.D. end up selling refrigerators? When I figured out that a lot more scientists buy lab refrigerators than innovative leading-edge instruments. I hope that my many years of lab experience will help you find the right equipment for your work. Before co-founding Tovatech I worked in business development and project management at Smiths Detection, Photon-X, Cardinal Health, and Hoechst Celanese. And before that I spent 12 years as an R&D chemist at Hoechst Celanese and Aventis working on advanced drug delivery systems, polymer films and membranes, optical disks, and polysaccharides. Some day, eventually, I’ll make enough money to develop an innovative technology that will change the world.


Buyer's essential guide to scientific refrigerators & freezers

download now


Your information is secure, and won't be shared with a 3rd party or spammed.